Sourcecode: Example5.c



Sourcecode: Example5.c

] COLLABORATORS
TITLE :
Sourcecode: Example5.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME




Sourcecode: Example5.c iii

Contents

1 Sourcecode: ExampleS.c 1
L1 ExampleS.c . . . . . o e e e 1




Sourcecode: Example5.c

Chapter 1

Sourcecode: Example5.c

1.1 Example5.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ * */
/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
J*x —mmm e e */
/ * */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Parsing Command Line Tulevagen 22 */
/+ File: Example5.c 181 41 LIDINGO */
/+ Author: Anders Bjerin SWEDEN */
/* Date: 93-03-06 */
/* Version: 1.0 */
/ * */
/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/ * x/
/* Registered members may use this program freely in their =/
/ * own commercial/noncommercial programs/articles. */
/ * */

/***********************************************************/

/+* This example demonstrates how you can create your own strings

/* (command lines) which you then can parse with help of the
/* ReadArgs () function. We create a RDArgs structure as in the
/+ last example, but this time we initialize the "RDA_Source"

/+ field with our own command line. When we later call ReadArgs ()
/+ it will notice that it already have a string to parse, and it

/+ will therefore use that string and not read one from the
/* default input handler.

/* Include the dos library definitions: =/
#include <dos/dos.h>

/+ Include information about the argument parsing routine: =/
#include <dos/rdargs.h>

/+ Now we include the necessary function prototype files:
#include <clib/dos_protos.h> /* General dos functions...

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/




Sourcecode: Example5.c

#include <clib/exec_protos.h> /* System functions... */
#include <stdio.h> /+ Std functions [printf()...] =*/
#include <stdlib.h> /* Std functions [exit()...] */
#include <string.h> /+ Std functions [srtlen()...] =*/

/+ Here is our command line template: =/
#define MY COMMAND_ LINE_TEMPLATE "SoundFile/A,V=Volume/K/N,F=Filter/S"

/+ Three command templates are used: =*/
#define NUMBER_COMMAND_TEMPLATES 3

/+* The command template numbers: (Where the result of each «/

/+ command template can be found in the "arg_array".) */
#define SOUNDFILE_TEMPLATE O
#define VOLUME_TEMPLATE 1
#define FILTER_TEMPLATE 2

/* Set name and version number: =*/
UBYTE *version = "S$VER: AmigaDOS/ParsingCommandLine/Example5 1.0";

/+ Declare an external global library pointer to the Dos library: =/
extern struct DosLibrary xDOSBase;

/* Declare a pointer to a RDArgs structure which we will allocate «*/
/+ ourself with help of the AllocDosObject () function: */
struct RDArgs *my_rdargs;

/+ Declared our own functions: */

/* Our main function: =*/
int main( int argc, char =*argv[] );

/* Cleans up nicely after us: x/
void clean_up( STRPTR text, int code );

/% Main function: =/

int main( int argc, char xargv([] )
{

/* Simple loop variable: x/

int loop;

/+ A pointer to the volume value: =/
LONG =*volume_value;




Sourcecode: Example5.c 3/5

/* Store the pointer which is returned by ReadArgs () here: x/
struct RDArgs *temp_rdargs;

/* The ReadArgs () function needs an arrya of LONGs where x/
/* the result of the command parsing will be placed. One x/
/* LONG variable is needed for every command template. */
LONG arg_array[ NUMBER_COMMAND_TEMPLATES ];

/+ Here is our own command line we want to parse: =*/

/* Note the new line character ("\n") at the end =/
/+ of the string. You must always include this %/
/* at the end of the strings you want to parse. */
UBYTE *my_command_line = "Bird.snd Volume=35 Filter\n";

/* We need dos library version 37 or higher: x/
if ( DOSBase->dl_1lib.lib_Version < 37 )

clean_up( "This program needs Dos Library V37 or higher!", 20 );
/+* We will now clear the "arg_array" (set all values to zero): =/
for( loop = 0; loop < NUMBER_COMMAND_TEMPLATES; loop++ )
arg_arrayl[ loop ] = 0;

/+ Get a RDArgs structure from AmigaDOS: (We want a RDArgs =/
/* structure with no special tags.) */
my_rdargs = (struct RDArgs x) AllocDosObject ( DOS_RDARGS, NULL );

/+ Did we get a RDArgs structure: =/
if( 'my_rdargs )
clean_up( "Could not get a RDArgs structure!", 21 );

/+ Prepare the RDArgs structure so it uses our own command line: x/

/+ Give the RDArgs structure our own command line: (The command */
/* line will be fetched from the CSource structure if it is not =/
/* empty. Normally the command line is fetched from the default =*/
/* input stream which was set up when the program started, but */
/* you may want to parse some other string rather than the one «/
/+ which was written when the user launched this program) . */
my_rdargs—>RDA_Source.CS_Buffer = my_command_line;

/* Set the length of the command line: x/
my_rdargs—>RDA_Source.CS_Length = strlen( my_command_line );

/+ Set the current character position so it starts to read =/
/* the first character in the string (character 0): */
my_rdargs—>RDA_Source.CS_CurChr = 0;




Sourcecode: Example5.c

4/5

/* Parse the command line: (Note that we now use our x/
/+ own RDArgs structure which we have prepared with =/
/* our own customized command line.) */
temp_rdargs =
ReadArgs ( MY_COMMAND_LINE_TEMPLATE,
arg_array,
my_rdargs

)i

/* Have AmigaDOS successfully parsed our command line? =*/
if( 'temp_rdargs )
clean_up( "Could not parse the command line!", 22 );

/* The comand line has successfully been parsed! */
/* We can now examine the "arg_array": %/

/+ Print template 1, the file name: =/
if( arg_array[ SOUNDFILE_TEMPLATE ] )
printf( "File name: %s\n", arg_array[ SOUNDFILE_TEMPLATE ] );

/+ Print templat 2, the volume: =/
if( arg_array[ VOLUME_TEMPLATE ] )
{

/* Get a pointer to the volume value: x/
volume_value = (LONG %) arg_array[ VOLUME_TEMPLATE 1];

/* Print the volume: =*/

printf ( "Volume: %1d\n", xvolume_value );
}
else

printf( "No volume was set\n" );

/+ Print template 2, the filter switch: =/
if( arg_array[ FILTER_TEMPLATE ] )

printf( "The sound filter was turned on!\n" );
else

printf( "No sound filter will be used!\n" );

/* Before our program terminates we have to free the data that */
/* have been allocated when we successfully called ReadArgs(): =/
FreeArgs ( my_rdargs );

/+ The RDArgs structure we allocated will be «/
/+ deallocated in the clean_up () function. */

/* Clean up and exit with a smile on your face! x/
clean_up( "The End", 0 );




Sourcecode: Example5.c

/ *
/ *
/ *
/ *

vO

{

Handy function which closes and deallocates everything
that you have previously opened or allocated. You can
call this function at any time, and it will clean up
nicely after you and quit.

id clean_up( STRPTR text, int code )
/* Return the RDArgs structure to AmigaDOS: x/
if ( my_rdargs )

FreeDosObject ( DOS_RDARGS, my_rdargs );

/* Print the last message: =*/
printf ( "%$s\n", text );

/* Quit: x/
exit ( code );

*/
*/
*/
*/




	Sourcecode: Example5.c
	Example5.c


